Hands-on: Data Science, Machine learning using Python

Syllabus

1: Introduction to Python

- Installation and Working with Python
- ❖ Introduction, why python?
- Versions of Python
- **❖** SET PATH
- PEP 8 standards
- Coding conventions
- Understanding Python variables
- Identifier rules
- Literals
- Keywords
- ❖ IDLE and information
- Different ways of execution
- Scripting
- Python Operators
- Understanding python blocks
- Indentation, comments, docstring
- ❖ Type casting, Unicode etc.

2: Python Data Types

- Mutable and Immutable data types
- Declaring and using Numeric data types: int, float, complex
- Using string data type and string operations
- Defining list and list slicing, its methods
- Use of Tuple data type

3: Python Program Flow Control

- Conditional blocks using if, else and elif
- Nested if, elif ladder
- ❖ Simple for loops in python
- For loop using range, string, list and dictionaries
- Use of while loops in python
- ❖ Loop manipulation using: pass, continue, break
- Programming using Python conditional and loops block
- Different case studies

4: Python String, List, set and Dictionary Manipulations

- Building blocks of python programs
- Understanding string built-in methods
- List manipulation using built-in methods
- Tuple operation
- ❖ Set: its methods and manipulation
- Dictionary: its methods and manipulation
- functions
- Modules and Packages

5: Fundamentals of Object orientation:

- What is OOP
- Class
- Reference variable
- Types of variables
- Types of Methods
- Importing Class
- Constructor
- OOP's Concepts: Inheritance, Encapsulation, Polymorphism, Abstraction
- ❖ File handling in detail: txt, bin, csv

6. Complete Data Science

NumPy: (Numerical Python)

- Introduction to Numpy
- Datatypes of ndarrays
- Dealing with ndarrays, copies and views
- Arithmetic operations,
- Indexing , Slicing, splitting arrays
- Shape manipulation
- Stacking together different data

Pandas: (Data Analysis)

- DataFrame and Series
- DataFrame operations
- Data Slicing, indexing
- DataFrame functions
- ❖ Reading the files- csv, excel
- ❖ Boolean filtering

- Storing file in various formats
- Useful DataFrame functions
- Stats using pandas
- Dealing with missing data
- Operations over the data

Matplotlib: (Data Visualization)

- Introduction to Matplotlib
- ❖ Formatting the graph: colors, markers, linestyle, etc
- Customization
- Plotting with list, arrays, pandas
- ❖ Line plot, Scatter plot, Pie plot, Bar plot, Histogram etc

Seaborn: (Data Visualization)

- Different types of plotting
- Scatter
- Distance
- Histogram
- ❖ Pie plot
- ❖ KDE plot
- ❖ Joint Plot
- ❖ Pair plot

8. Machine Learning

- Introduction to Machine learning,
- Types of Machine learning
- Concepts of Data Preprocessing,
- Data munging,
- Importing the data, functioning over the data
- Arithmetic operations
- Categorical and Continuous data
- Feature scaling, selection

Binarization, Normalization. Label encoding

9. Machine Learning Algorithms

Linear Regression

- Importing data
- ❖ Data Selection, operations
- Splitting the data into training and testing
- Call the model, build the model and train
- Find the coefficients and intercept
- Accuracy measurements
- Visualization

Multi Linear Regression

- Importing Datasets
- Data preprocessing
- Feature scaling
- Training and Testing split
- Characterizing regression
- Find coefficients and intercepts
- Finding accuracy

Logistic Regression

- Theoretical introduction
- Importing Datasets
- Data pre-processing
- Feature scaling
- Characterizing regression
- Finding accuracy
- Confusion Matrix

Decision Tree Classification

- Polynomial curves
- Polynomial features
- Importing dataset
- Preparing data, preprocessing
- Characterizing regression
- Evaluating regressor
- Finding accuracy
- Visualization

Support Vector Machine

- ❖ SVM model
- Importing data, data Selection, operations
- Preprocessing
- Splitting the data into training and testing
- Call the model, build the model and train
- Predictions, Evaluating the algorithm

Naïve Bayes Classification

- ❖ Naïve Bayes working flow
- Probability learning, Applications
- Splitting the data into training and testing
- Stepwise model building
- Predictions & Evaluating the algorithm

KNN Classifier:

- Importing data, data Selection, operations
- Pros and cons
- Preprocessing
- Splitting the data into training and testing
- Feature scaling
- Call the model, build the model and train
- Predictions, Comparing error rate-k value

KMeans clustering:

- Introduction to Unsupervised learning model
- ❖ K-means clustering in detail
- Importing the dataset
- Finding the clusters
- Visualize the clusters
- ❖ Applying the transformation
- Building the model
- Visualize complete clustered model.

Random Forest Regression

- Ensemble learning
- How Random Forest works?
- Advantages and Disadvantages
- Preparing data
- Training the regressor
- Evaluating regressor
- Accuracy score

Add-on

- **❖** Building the Machine Learning model
- **❖** Git/GitHub: Introduction
- Introduction to Agile Methodology

- ❖ Maven
- Jenkins
- ❖ Jira
- **❖** Support in Technical portfolio building
- **!** Lectures by industry Experts
- **❖** Mock and Technical round preparation
- **❖** Resume building assistance
- Python 50 Projects
- **❖** Data Science 50 Projects
- Machine Learning 50 projects

We deliver more than your Expectations ©